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A new Fourier cycling phasing method is proposed based on the mathematical

principle of the global minimization. In reciprocal space, the Fourier coefficient

is of a mixed form of the normalized structure factors (2E2
o � E2

c)Ec, while in

direct space the Fourier map is modified with a peak-picking procedure. This

method does not use any preliminary information and does not rely on any

critical parameter; it can start with either randomly assigned phases or fixed

phases (all zeros). This method performs significantly better than the commonly

used forms of Fourier cycling.

1. Introduction

The Fo synthesis (Bragg, 1929) is a simple but fundamental Fourier

cycling technique; it iteratively calculates the structure factors from a

postulated model, and then uses the calculated phases together with

the measured amplitudes (Fo’s) to calculate the density map. It has an

amazing property: the newly calculated map usually represents an

improved model. Although Fo synthesis is explicitly used for refine-

ment (Lipson & Cochran, 1966), it has been found recently that it is

also capable of solving structures ab initio provided that a suitable

direct-space modification is applied and the iteration is kept for

hundreds or thousands of times. By simply eliminating the low

densities of the map (LDE) in each cycle, some structures can be

solved from randomly assigned phases (Shiono & Woolfson, 1992); by

flipping the density lower than a critical threshold (charge flipping),

many structures can be solved (Oszlányi & Süto��, 2004, 2008; Wu et al.,

2006). Here we report a new Fourier cycling method which uses a

mixed form of the structure factors as the Fourier coefficient and

a new peak-picking procedure for direct-space modification. This

method is based on the mathematical principle of the global mini-

mization.

2. An iterative phase solution

Denoting {ri} (i = 1, 2, . . . , N) the atomic positions, the structure

factor Fh for reflection h can be expressed as

Fh � Fh expði�hÞ ¼
PN

i¼1

fi expð2�ih � riÞ: ð1Þ

Here fi is the ith atomic scattering factor, which is a special function of

h, Fh is the structure amplitude and �h the phase. Mathematically a

solution to the phase problem can be obtained by finding a set of

vectors r1, r2, . . . , rN that minimizes the merit function

�2
ðr1; r2; . . . ; rNÞ ¼

X

h

1

w2
ðF2

o � F2
c Þ

2; ð2Þ

where Fo and Fc are the observed and calculated structure amplitudes

(subscript h is omitted here and hereafter for clarity), respectively.

The weight w can be chosen as
PN

i¼1 fi
2, and then we have

�2
ðr1; r2; . . . ; rNÞ ¼

P
h

ðE2
o � E2

cÞ
2
; ð3Þ

where E is the amplitude of the normalized structure factor without

the space-group-related factor ":

E � E expði�Þ ¼
PN

i¼1

ei expð2�ih � riÞ; ð4Þ

E2
¼ E E� ¼ E

PN

i¼1

ei expð�2�ih � riÞ ð5Þ

and ei = fi /w
1/2 is approximately a constant (Karle, 1991), and for

molecules with equal or nearly equal atoms such as C, N and O it is

close to 1/N1/2. Equation (3) defines a 3N-dimensional non-linear

system and its solution is of an iterative nature. The conventional

approach to this problem is to take the derivative of equation (3) with

respect to all parameters ri = (xi, yi, zi) and the minimization (by

setting all derivatives to zero) leads to 3N simultaneous equations

whose solution results in an improvement (�xi, �yi, �zi). However,

this approach requires that the initial parameters are reasonably

accurate, i.e. the initial phase solution is already obtained; otherwise

it will easily ‘converge’ to one of the numerous local minima.

Therefore, it has only been used as a refinement procedure in crys-

tallography. In the following we present a new approach that attempts

to reduce �2 directly.

From equation (3),

�2
ðr1; r2; :::; rNÞ ¼

P
h

E4
o �

P
h

ð2E2
o � E2

cÞE
2
c

¼
P

h

E4
o �

P
h

ð2E2
o � E2

cÞEc

PN

i¼1

ei expð�2�i h � riÞ

ð6Þ

¼
P

h

E4
o �

PN

i¼1

ei

P
h

ð2E2
o � E2

cÞEc expð�2�i h � riÞ

ð7Þ

¼
P

h

E4
o � V

PN

i¼1

ei JðriÞ; ð8Þ

where ei is assumed a constant in equation (7), V is the unit-cell

volume, and density map J(r) is the inverse Fourier transform (F�1)

of a mixed form of the structure factors:

JðrÞ �
1

V
F
�1
fð2E2

o � E2
cÞEcg ð9Þ

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wx5009&bbid=BB14


¼ JcðrÞ þ 2� JðrÞ: ð10Þ

Here Jc(r) represents the model structure and �J(r) is a difference

map:

JcðrÞ �
1

V
F
�1
fE2

cEcg ð11Þ

� JðrÞ �
1

V
F
�1
fðE2

o � E2
cÞEcg: ð12Þ

Since
P

h E4
o is a constant, equation (8) indicates that the residue �2

for a given model is directly determined by the density values J(r) at

the model positions {ri}; accordingly, the top N peaks r01; r02, . . . , r0N of

J(r) can be taken as the improved model since the corresponding �2 is

the minimum; if these top peaks are coincident with the model

positions r1, r2, . . . , rN, then the model is not improvable, i.e. the

difference map �J(r) has no significant features, which indicates that

a global minimum of �2 is reached. Thus, the density map J(r) has a

self-improving nature and an iterative solution can be naturally

constructed:

It has the same scheme as the Fo synthesis except that the Fourier

coefficients are different. To conveniently calculate Ec with Fourier

transform, J(r) can be modified by keeping the top N peaks and

setting the rest to zero (peak picking, see details in the next section);

this modified J(r) is taken as the model density Jc(r) and its Fourier

transform is E2
cEc according to equation (11).

The iteration may start from either randomly assigned phases or

fixed phases. A general fixed start is to set all phases to zero; in this

case, the corresponding Fourier map has an anomalously strong peak

at the origin, which may be replaced with a normal peak or simply

excluded from the model.

The iterative process can be monitored by �2-related global

parameters such as the conventional residual R factor or the corre-

lation coefficient (c.c.). An intuitive global parameter is the average

height (�) of the top N peaks, which is evident from equation (8) and

the ideal average peak height �0 at convergence (�2
! 0) can be

calculated for equal-atom structures:

�0 ¼
1

VðNÞ1=2

X

h

E4
o: ð13Þ

The actual � at convergence is usually �20% less than �0 for crystals

containing only light atoms such as C, N and O. Fig. 1 shows the

typical curves for the structure with the PDB (Protein Data Bank)

code 1a7y (see Tables 1 and 2) with �0 = 0.56. The � value normally

experiences two jumps (significant and sharp increase in �10 cycles)

and an evolving stage in between. The first jump is at the start and it

reaches �60% of �0 and the second leads to �80% of �0, which

indicates the completion of the evolution from ordinary peaks to

atomic peaks. It is found, by examining the evolution process of some

solutions, that in the beginning of the evolving stage J(r) usually

contains several partial solutions; which one is to emerge depends

subtly on the settings, e.g. the actual number of peaks used for the

model Jc(r). For simple structures, e.g. small-molecule crystals with

centrosymmetry or heavy atoms, the evolving stage is so short that

the second jump immediately follows the first one, which results in a

single complete jump. The c.c. curve is similar to the � curve and the R

curve is complementary to the � curve.

3. Some implementation details

Peak picking for direct-space modification involves two steps: find the

peak locations (peak finding) and then modify the density map.

However, the commonly used peak-picking procedures (e.g. Shel-

drick, 2008) do not actually modify the map; they directly use the

coordinates of the picked peaks and assign each peak a weight to

calculate the structure factors. This is equivalent to a modification

that uses only the central pixel of each peak and sets all other pixels

of the map to zero. Because of the resolution limit of the diffraction

data, an atomic peak in the density map is represented by a volume

(defined by the resolution) rather than a single pixel. Therefore, the
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Figure 1
Characteristics of the Fourier iteration process (from structure 1a7y). c.c.,
correlation coefficient; R, residual R factor; �, the average peak height.

Table 2
Test structures.

Nasu is the number of non-H and non-solvent atoms in an asymmetric unit and T is the
data-collection temperature. Data sources: hg5135 (Pansuriya et al., 2011) and rk2244
(Narayanan et al., 2010) are from Acta Crystallographica Section E; 1a7y (Schafer et al.,
1998) and 1b0y (Parisini et al., 1999) are from http://www.pdb.org.

hg5135 rk2244 1a7y 1b0y

Space group P�11 Pna21 P1 P212121

Nasu 120 49 314 631
Volume (Å3) 4448.3 3326.8 5887.1 65818.3
Resolution (Å) 0.75 0.79 0.94 0.93
T (K) 173 295 133 100
Atoms with Z > 8 — — — 4Fe, 9S

Table 1
Comparison of the performance (iteration number at convergence) of five forms of
the Fourier iteration method for four test structures (see Table 2).

Parameters: k = 0.03; grid size 0.35 Å pixel�1 for hg5135 and rk2244, 0.4 Å pixel�1 for
1a7y and 1b0y. ‘—’ indicates a solution is not obtained within 50 000 cycles. All tests start
with fixed phases (all zeros).

Method hg5135 rk2244 1a7y 1b0y

(2E2
o � E2

c )Ec 18 46 171 1554
(2Eo � Ec)exp(i�) 146 688 21794 8103
Eoexp(i�) 210 2514 — —
(2Fo � Fc)exp(i�) 474 5118 — —
Foexp(i�) 855 24903 — —



peak picking used in this Fourier iterative method uses the whole

peak. If the resolution is �1.0 Å or better and the grid size

�0.4 Å pixel�1, the whole peak can be well represented by pixels

that reside in a 5 � 5 � 5 grid box centered at the peak pixel and

have a distance less than 1.0 Å from the center. To accommodate the

overlapped and/or irregularly shaped peaks in the initial stage, the

constraint of a minimum interatomic distance 1.2 Å is applied and a

pixel is evaluated using the following peak-finding procedure: for the

3� 3� 3 box centered at pixel (i, j, k), first sum up the pixel values in

each of the three 9-pixel planes along the i axis Si�1, Si and Si+1;

if Si > Si�1 and Si > Si+1, then do the same along the j axis; if Sj > Sj�1

and Sj > Sj+1, then examine the k planes; if Sk > Sk�1 and Sk > Sk+1,

then pixel (i, j, k) is the center of a peak. To speed up this process,

one only needs to evaluate pixels that have values larger than a

threshold (e.g. 0.2�0); it is even better to change the threshold

dynamically.

The number of peaks Np to be kept for the above direct-space

modification is not necessarily the same as the actual number of

atoms N. This method normally works with Np in the range of 0.4N to

1.0N and in this range no choice is always better. Since the actual N

may not be known but the cell volume V is always known, a para-

meter k can be introduced: Np = kV. The normal range of k is 0.02–

0.05 for small-molecule structures and 0.015–0.04 for macromolecular

structures; therefore a general k value 0.03 is usually used. In fact,

many structures, especially those containing heavy atoms, can be

solved with much lower k and even faster. For example, the structure

1b0y (see Tables 1 and 2) can be solved in 1554 cycles with k = 0.03,

and only 120 cycles with k = 0.001 (Np = 65).

This method works in the space group P1 and the symmetry

information is not used. The normalized structure factors are

calculated by dividing F2
o(h) by the mean value in the corresponding

shell, and a Wilson plot or an overall thermal parameter is not

needed.

4. Examples

Table 1 lists five forms of the Fourier iteration method and their

performance for four test structures (see Table 2). It can be seen

that the first form (2E2
o � E2

c)Ec from equation (9) performs signifi-

cantly better than the commonly used forms Foexp(i�), Eoexp(i�),

(2Fo � Fc)exp(i�) and (2Eo � Ec)exp(i�). Actinomycin D (1a7y), a

difficult structure for charge flipping that utilizes two critical para-

meters (Oszlányi & Süto��, 2005), can be solved very easily with the

proposed method. Using a 2.4 GHz processor and the Fourier

transform library FFTW (Frigo & Johnson, 2005) the CPU time is 2 s

for structure hg5135, 2 s for rk2244, 12 s for 1a7y and 993 s for 1b0y.

I thank my family for their support.

References

Bragg, W. L. (1929). Proc. R. Soc. London Ser. A, 123, 537–559.
Frigo, M. & Johnson, S. (2005). Proc. IEEE, 93, 216–231.
Karle, J. (1991). Proc. Natl Acad. Sci. USA, 88, 10099–10103.
Lipson, H. & Cochran, W. (1966). The Determination of Crystal Structures, pp.

194–199. Ithaca: Cornell University Press.
Narayanan, P., Sethusankar, K., Nandhakumar, M. & Mohanakrishnan, A. K.

(2010). Acta Cryst. E66, o3155.
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